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Abstract—Home-based rehabilitation systems can speed up
recovery by enabling patients to exercise at home between
rehabilitation sessions. However, home-based rehabilitation sys-
tems need to monitor and feedback exercises appropriately, as
incorrect or imperfect exercises negatively impact the recovery
of the patient. This paper describes a methodology for assessing
the quality of rehabilitation exercises using inertial sensors, for
a system that tracks exercises using surface electromyography
sensors. This duality extends the information provided by the
electromyography system since it provides a more comprehensive
evaluation of posture and movement correctness. The method-
ology was evaluated with 17 physiotherapy patients, obtaining
an average accuracy of 96% in detecting issues in the exercises
monitored. The insights of this work are a first step to comple-
ment an electromyography-based home system to detect issues in
movement and inform patients in real time about the correctness
of their exercises.

Index Terms—home-based rehabilitation, physical rehabilita-
tion, electromyography, inertial sensors, muscular activation,
posture, biofeedback

I. INTRODUCTION

The ageing process observed in Western Countries chal-

lenges healthcare systems and physiotherapists. Older adults

are more likely to fall, have a stroke, and develop cardiac

diseases, which means that more people require physical

rehabilitation than ever before [3]. In a context with many

patients for roughly the same professionals, it is important

that patients recover as soon as possible, so that professionals

are free to attend other patients pressing needs.

To increase the effectiveness of rehabilitation programs,

prescribed exercises should be executed correctly and within

regular intervals [4]. Quite often though, the patient only per-

forms the prescribed exercises during sessions at the clinic [5].

Moreover, when patients are motivated to perform exercises

at home they are likely to face difficulties and deviate from

the correct execution of exercises, resulting in the uncon-

scious introduction of compensatory movements or postures,

insufficient range of movements, improper timing of muscular

activation, or even biomechanical misalignment [5], [6].
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European Union (EU), with operation code POCI-01-0247-FEDER-017863.

Home rehabilitation systems hold the promise to support pa-

tients at home, by monitoring exercises and offering feedback

on execution. However, to have an impact, home rehabilitation

systems need to be able to accurately detect when exercises

are not appropriately performed, to guide patients and avoid

negative impacts of rehabilitation. In this context, the advances

in the capabilities and the availability of wearable sensors

present an opportunity to objectively measure movements and

recognize human activities.

Assessing the quality of the performed exercises can be

hard. For example, in (surface) electromyography-based plat-

forms, it is only possible to detect the muscle’s contraction

or relaxation. To assess the quality of the performed exercises

in terms of movement and posture, other sensors need to be

added. For this reason, we used inertial sensors to characterize

human motion, as these sensors are able to retrieve motion

characteristics such as acceleration, rotation, angular velocity

and posture information, and thus complement a home-based

rehabilitation system based on electromyography.

The contribution of this paper is two-fold. First we present

a methodology which complements the information provided

by Surface electromyographic sensors (sEMG) rehabilitation

systems that uses inertial data to characterize posture and

movement correctness in ambulatory settings; the second con-

tribution is a feasibility study of the algorithm’s performance

on a clinical context. The motivation for this work lies in the

challenges arising from home-based physiotherapy programs.

This paper is organized in 7 sections. In Section II we

describe previous work with applications for home-based

rehabilitation. In Section III we present the architecture of the

home-based rehabilitation system highlighting the main actors

and interactions. The methods used for exercise evaluation

are described in Section IV. Section V and VI present the

results and discussion, respectively, of a feasibility study with

physiotherapy patients. Section VII concludes this manuscript,

highlighting some areas of future work.

II. BACKGROUND

A. Using electromyography for home-based rehabilitation

In the context of home-based rehabilitation, the patient

performs exercises without clinical oversight or feedback.

Therefore, it is important to design a system that monitors
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Fig. 1. System overview of the proposed home-based rehabilitation system. The patient wears the MuscleBANs, provided by the Physio@Home system [1],
to monitor muscular activation during exercises (see scapula). As a complement to the system, inertial sensors were added to assess the posture of patients
during exercise execution, highlighted in figure (see wrists). Both devices send raw data to a smartphone application that analyses it and displays a serious
game animated according to the exercise (see [2]). The results of the exercise evaluation are also sent to a centralized server. Physiotherapists can later access
processed data through a web portal, allowing them to monitor the patient’s progress and issue recommendations.

the quality of the movements being executed. Given that a

large part of rehabilitation programs involve the promotion

of muscle activation over injured segments, the sEMG sensor

emerged as a prime resource for biofeedback systems [7],

[8]. The amplitude of the sEMG signal is related to muscle

torque and activation, which provides information related to

the muscular activity required for a given exercise as the

optimal positioning to accomplish its execution [9], [10]. In the

literature, sEMG was used to monitor daily living in functional

assessment of stroke patients [11], upper limb rehabilitation

[12], [13] and neck and shoulder disorders [14].

Despite being a valuable method for muscular assessment,

the sEMG sensor fails to provide information regarding move-

ment characteristics or the overall posture of the patient. This

can be problematic because in rehabilitation it is important to

ensure that the patient is performing the prescribed muscular

loads under the correct posture and not introducing compen-

satory movements to the prescribed exercise. Therefore, it

is important to introduce new information sources that can

provide information regarding human motion.

B. Approaches to monitor exercise quality

Prior work has explored the use of computer vision algo-

rithms and inertial sensors to assess the quality of exercises

in home rehabilitation solutions. Microsoft Kinect has been

a popular approach to retrieve the measurement of range

of motion of human movement [15]–[18], despite not being

developed with the intention of clinical use. The feedback

on the exercise was often visual, with games or activities

advancing when the exercise was performed appropriately.

Another common alternative was to track limb trajectories

and posture with inertial sensors. These sensors are small,

inexpensive and easy to setup, qualities which facilitate their

adoption for ambulatory settings. The data from inertial sen-

sors is often processed using machine learning techniques and

classification models that categorize exercise with a binary

classification (i.e. correctly vs. incorrectly executed) or multi-

label classification (i.e. characterizing the type of error exe-

cuted) [19]–[24]. The feedback provided to patients was often

visual, drawing on serious games such as the Riablo system

[25]. There were also systems providing auditory feedback

on the execution of exercises, such as COPDTrainer [26],

which emits a different sound when exercises are accurately

or inappropriately performed [26].

The literature review showed the potential benefits of using

sEMG and possible approaches to evaluate exercise quality.

However, the number of solutions which combine sEMG and

inertial sensors to evaluate the quality of rehabilitation exer-

cises is limited. The closest studies [27], [28] have employed

inertial sensors and sEMG alternately to monitor exercise

execution, but not the quality of the exercises. In our work,

we devise a solution which combines sEMG and inertial

sensors in the context of the prescribed clinical exercises by

the physiotherapist. To this end, we complement a sEMG

home-based rehabilitation system, which detects periods of

muscular activation, with inertial sensors, which allow a more

comprehensive evaluation in terms of posture and movement

during those periods.

III. BUILDING A SYSTEM TO ASSESS QUALITY OF

EXERCISES PERFORMED USING PHYSIO@HOME

The Physio@Home [1] project aims to improve the effi-

ciency of rehabilitation by supporting physiotherapy sessions

at the clinic and at home with a biofeedback technological

platform. The solution draws on wearable sensors used to track

the execution of the movements and give biofeedback to the

user1. The performance metrics collected during the exercise

execution are stored and made available to the physiotherapist

1The biofeedback platform is described in [2].



through a web portal. The performed exercises are monitored

by sEMG sensors, which analyse the contraction and relax-

ation of specific muscles. Nevertheless, while this sensor is a

valuable asset to assess muscular activation, it fails to offer

relevant information regarding the patient’s posture.

The Physio@Home system has two main users: the phys-

iotherapist and the patient, as depicted in Figure 1. Physio-

therapists access a web interface to prescribe rehabilitation

plans, monitor the patient’s progress, evaluate the adherence

to the scheduled plan, and view detailed reports containing

the qualitative evaluation of exercises. Patients access the

prescriptions through a mobile application which summarizes

the rehabilitation plan and controls the wearable sensors.

With this work, we suggest adding inertial sensors to the

existing solution to be able to improve the quality of the

assessment of the performed exercises. The updated version

of the system would be composed of two types of devices:

two MuscleBANs2 equipped with a sEMG sensor and a tri-

axial accelerometer, and two inertial sensors [29] equipped

with a tri-axial accelerometer, gyroscope and magnetometer.

These devices communicate with a smartphone application

using Bluetooth Low Energy and sample raw data at 50 Hz.

In this setup, the MuscleBANs would be attached using

electrodes to the muscles, as in previous versions of the

system, and the inertial sensors embedded in a bracelet, would

be easily attached to different body locations according to

requirements of the prescribed exercise. The proposed setup

was designed to be applied in different rehabilitation exercises

since all wearables can be efficiently attached to different body

locations according to the requirements of each exercise.

IV. MATERIALS AND METHODS

In order to develop a methodology to assess the quality of

exercises using inertial sensors, we performed data collections

with patients currently taking part in physical rehabilitation

programs. For that purpose, a dataset was collected at Centro

de Reabilitação Professional de Gaia, a public rehabilitation

center and clinic from Portugal. The methods used for data

analysis comprise an automatic identification of the time

intervals in which the patient was performing the exercise rep-

etitions and a machine learning pipeline to recognize whether

a repetition was correctly or incorrectly performed.

A. Participants

A total of 17 patients were selected for this study. The

recruitment was performed by physiotherapists taking into

account the clinical background and rehabilitation prescription

of each patient. The patients, 10 males and 7 females with

ages between 24 and 58 (average 42 ± 13 years), had

different professional backgrounds, levels of education and

clinical conditions (paralysis, hemiparesis, muscular strength

and balance problems, among others). All participants were

briefed on the motivation, primary objective and procedures

of the research, along with the possibility to clear any doubts

2http://www.biosignalsplux.com/en/muscleban

Fig. 2. Exercises: (a) Isometric scapular retraction strengthening (Exercise
1), and (b) forward lunge (Exercise 2).

the participants could have. Following this explanation and

dialogue all participants provided written informed consent.

B. Protocol

The data collection protocol was defined by the physiother-

apists so that exercises were relevant in clinical context. Two

different exercises were selected: exercise 1 was composed by

an isometric scapular retraction strengthening, a static exercise

depicted in Figure 2 (a); and exercise 2 was composed by

a forward lunge, dynamic and functional exercise, depicted

in Figure 2 (b). These exercises are frequently prescribed in

physiotherapy programs and their selection intends to promote

variability since they differ from each other in terms of move-

ment required to perform the exercise and posture. Two Mus-

cleBANs were attached to the upper and lower trapezium and

two inertial sensors were placed on both wrists for monitoring

exercise 1. Two MuscleBANs were attached to the quadriceps

and upper trapezium muscles and two inertial sensors were

placed on the thigh and on the ankle for monitoring exercise 2.

Data collection was performed at a rehabilitation clinic. The

physiotherapists placed the wearables sensors according to the

exercise to be performed and instructed patients to execute

the exercises. The physiotherapists guided patients while they

performed the exercises. Patients performed a variable number



Fig. 3. Data analysis framework.

of repetitions (between five and ten) of each exercise. All

sessions were video-recorded and the instants corresponding

to the beginning and end of each repetition were manually

annotated using a button press in a dedicated mobile data

logger application.

C. Data Analysis

The video recordings from data collection protocol were

analyzed and each repetition of the exercises was annotated

in terms of correct and incorrect execution. Physiotherapists

observed and commented on the exercise execution of patients

while they were performing the exercises, reporting if the

repetition was correctly executed or if there were any devi-

ations and/or compensations. These comments were used as

groundtruth in this study. Yet, it is important to mention that

patients were not aware of physiotherapist’s comments during

the data collection process.

The data obtained from the four wearable devices was pro-

cessed using a machine learning pipeline that ressembles [24].

As illustrated in the scheme of Figure 3, the pipeline was

divided into two main stages: (1) automatic segmentation of

repetitions based on sEMG; and (2) a supervised machine

learning approach to classify repetitions into correct and

incorrect executions and characterize the incorrect movement

into a limited range of deviations. In contrast to previous work,

we labeled exercises as correct and incorrect and not into

different types of deviations3.

For the rest of this subsection, we elaborate over the

description of the data analysis pipeline. The segmentation of

sEMG comprises the task of identifying the temporal intervals

at which muscular activation is present, quite often achieved

by analyzing the sEMG envelope. Since each subject executed

several repetitions of the exercise during the protocol, it is

expected that the resultant signal is composed of several

intervals of activation. We used a recent tool called Syntactic

Search for Time Series (SSTS) [30], which facilitates the

process of defining and querying patterns on time series.

The proposed methodology delivers a more interactive and

3In the previous work, common deviations of the exercises were identified
by physiotherapists. However, the physiotherapy patients performed many
types of deviations, some of which could not be easily distinguished, which
made the task of classifying deviations into types as impracticable.

TABLE I
TOTAL NUMBER OF TIME WINDOWS FOR FOR EACH CLASS.

Class Exercise 1 Exercise 2

Correct 90 53
Incorrect 46 47

expressive method of matching the desired patterns in time

series. SSTS converts time series from the numeric into the

symbolic domain using a set of connotation rules defined by

the user. The search for patterns is defined in the symbolic

domain using regular expressions.

After the segmentation process, the inertial signals were

subjected to a process of feature extraction. The signals were

composed by raw accelerometer signals and also orientation

signals calculated combining accelerometer and gyroscope

data using a complementary filter to calculate absolute and

relative angles of body segments [31]. A set of features were

extracted from the windows resulted from the segmentation

process. The set was composed by statistical features - skew-

ness, kurtosis and histogram - and temporal features - mean,

median, maximum, minimum, variance, temporal centroid,

standard deviation, root mean square and auto correlation.

After feature extraction it was possible to observe that some

of the features were correlated and it should be possible to

remove correlated features without compromising overall data

availability, therefore, the forward feature selection method

was applied. The samples were classified using scikit-learn
v0.19.1, a Python Machine Learning library, on Python 2.7.13,

with three different: K-Nearest-Neighbours (KNN), Support

Vector Machines (SVM), and Random Forest (RF). For valida-

tion purposes, leave-one-user-out cross validation was applied

to ensure independence of the subject.

V. RESULTS OF EXERCISES EVALUATION

The Table I summarizes the class distribution for both

exercises. For exercise 1 there is a class imbalance since the

number of repetition performed correctly is higher than the

number of incorrect repetitions. For exercise 2, the number of

instances for each class is similar.

Results of the validation for the assessment of the classifica-

tion performance are presented in Table II. Here, the amount

of samples collected for exercise 1 was balanced to obtain

equal number of class samples for each one of the classi-

fiers, using the Synthetic Minority Over-Sampling Technique

(SMOTE), implemented in imbalanced-learn v0.4.3. The clas-

sifiers trained separately, manual and automatic segmented

time windows. Manual windows correspond to the annota-

tions of the exercises repetitions during data collection, and

automatic segmented windows result from the application of

the automatic approach based on SSTS. Performance metrics

such as accuracy, recall, and precision were computed. While

accuracy measures the overall effectiveness of a classifier,

recall measures the effectiveness of a classifier at identifying

a desired label, and precision measures the classifiers ability

to detect negative labels.



TABLE II
CLASSIFICATION RESULTS OBTAINED FOR KNN, SVM AND RF CLASSIFIERS FOR EACH EXERCISE AND FOR AUTOMATIC AND MANUAL SEGMENTATION.

Accuracy (%) Precision (%) Recall (%)

Exercise Classifier Manual Automatic Manual Automatic Manual Automatic

1
KNN 96 98 86 98 81 60
SVM 96 95 88 98 73 30
RF 97 100 85 100 78 60

2
KNN 96 95 82 75 80 92
SVM 95 95 86 70 79 70
RF 98 95 87 70 78 95

The methodology achieved relatively high accuracy scores

for all classifiers for both manual and automatic segmentation.

Precision and recall were also high in general, however,

for the automatic segmentation, in exercise 1, all classifiers

demonstrated low levels of recall, and in exercise 2, precision

in all classifiers was also lower compared with the manual

segmentation.

VI. DISCUSSION

The results of the evaluation of the quality of the selected

exercises performed in ambulatory settings detailed in Table II

demonstrated that it is possible to correctly classify different

rehabilitation exercises executions using inertial units with

satisfactory levels of accuracy, when compared to the ones

obtained in the literature [20]–[23], which evaluated exercises

using information only from inertial sensors. However, the

dataset of this study is significantly smaller than the ones

from the aforementioned studies. A careful interpretation of

the results is needed considering the dataset size of Table I.

For manually annotated repetitions, recall and precision

maintained relatively high values, however, for the automatic

segmentation repetitions, recall and precision were slightly

lower for exercises 1 and 2, respectively, demonstrating more

confusion in distinguishing correct from incorrect exercise

execution. Results showed that KNN classifier achieved an

average recognition accuracy of 96%, which is superior the

other classifiers under test. For the automatic segmentation,

the number of repetitions obtained were smaller compared

to the ground-truth of the manual segmentation. In a real

case scenario, and considering physical limitations of our

dataset (paralysis, hemiparesis, muscular strength and balance

problem, among others), it was difficult to have clear patterns

of muscle activation, which influenced the performance of the

SSTS tool. This also affected the performance of the classifiers

when considering the automatic segmentation, which lead to

value differences between automatic and manual segmentation.

Performance metrics are, in general, significantly smaller for

the automatic segmentation. Nevertheless, this limitation was

only noticed since the methodology developed in [24] was

tested in a real case scenario, which needs to be considered

in future work.

Our study details a methodology that is still in develop-

ment, and there are a few studies with a similar approach

that we can directly compare to our work. As reported in

Section II, some studies already combined accelerometers with

electromyography sensors: Gamecho et al. [27] used a device

with these two sensors to evaluate the performance of upper

limb exercises for post-stroke or post-operative recovery cases,

extracting muscle activity and limb tilt angles to be used as

inputs in a mobile robot; and Liu et al. [28] extracted motion

features including angles and muscle activity information also

to be used as inputs in a upper limb rehabilitation training

system. Both studies were concerned with biofeedback and

their systems relied on direct comparison of muscle activation

and limb tilt angles to pre-defined desired thresholds, in order

to trigger a command in a robot and in a game, respectively.

None of these studies combined sEMG and inertial data at

the same time to ensure a more complete of evaluation the

exercise execution.

This study demonstrated the viability of using inertial

sensors to complement sEMG data. Firstly, sEMG data was

used to segment all the repetitions. Secondly, inertial sensors

were used to assess posture and movement correctness, which

would be impracticable if the methodology was only depen-

dent on sEMG. This duality of sensors allows evaluating the

quality of rehabilitation exercises by ensuring correct postures

are maintained during the moments of muscular activation.

Additionally, our methodology can be modular and adaptable

to other exercises since the bracelets with embed inertial

sensors used in this study could easily be relocated to different

anatomical segments if other exercises were selected.

VII. CONCLUDING REMARKS

This paper presented a methodology to use inertial sensors

for evaluating exercises correctness in sEMG-based home

rehabilitation systems. For that purpose, the feasibility of

previous algorithms developed by the authors was validated

in a clinical context.

The data was collected with patients currently taking part in

physical rehabilitation programs where our approach achieved

an average accuracy of 96% in distinguishing correct from

incorrect exercise execution, recognizing the contribution of

inertial sensors in extracting information regarding posture and

movement to already existing sEMG-based systems.

As part of our ongoing research, the methodology presented

in this study will be implemented in the Physio@Home

system. This will support the biofeedback system with in-

formation regarding the posture of the patient and it will



contribute to a more accurate guidance and correction of the

exercises performed by patients at home.
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